

THALES THEOREM

He proposed the THALES THEOREM.

STORY OF THALES THEOREM (video from ScienceWorld Channel on YouTube)

ABC is a triangle.

- (d) // (BC).
- (d) Cuts the two sides [AC] and [AB] proportionally.

$$\frac{AM}{AB} = \frac{AN}{AC}$$

Same in these two other cases.

$$\frac{AM}{AB} = \frac{AN}{AC}$$

Same in these two other cases.

$$\frac{AM}{AB} = \frac{AN}{AC}$$

Other properties of Thales theorem

Remark:

We can start the ratio by AB:

$$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}$$

Other properties of Thales theorem

$$\frac{MA}{MB} = \frac{NA}{NC}$$

$$\frac{AB}{MB} = \frac{AC}{NC}$$

APPLICATION #1

Calculate x in each case.

(DE)//(AC),

according to Thales theorem

$$\frac{\frac{BD}{DA} = \frac{BE}{EC}}{\frac{2}{6} = \frac{3}{x}}$$
$$x = \frac{6 \times 3}{2} = 9$$

(DE)//(AC),

according to Thales theorem

according to Thales the
$$\frac{BD}{BA} = \frac{BE}{BC}$$

$$\frac{x}{12} = \frac{3}{3+6}$$

$$C x = \frac{12 \times 3}{9} = 4$$

(DE)//(AC),

according to Thales theorem

(DE)//(AC),

according to Thales theorem

$$\frac{\frac{BA}{BD} = \frac{BC}{BE}}{\frac{5}{2} = \frac{8}{x}}$$

$$x = \frac{2 \times 8}{5} = 3.2$$

APPLICATION #2

Show that
$$\frac{MO}{MA} = \frac{AO}{AW}$$

In the triangle OAH:

(MN) // (AH)

According to Thales theorem,

$$\frac{MO}{MA} = \frac{NO}{NH}$$

In the triangle OWH:

(AN) // (WH)

According to Thales theorem,

$$\frac{AO}{AW} = \frac{NO}{NH}$$
Then
$$\frac{MO}{MA} = \frac{AO}{AW} = \frac{NO}{NH}$$

CONVERSE OF THALES THEOREM

If M is a point of (AB) and N is a point of (AC) such that: $\frac{AM}{AB} = \frac{AN}{AC}$, then (MN) // (BC)

APPLICATION #3

BSA

In the following figure, we have OA = 2cm, OB = 2.5 cm, OC = 3 cm and OD = 3.75 cm

Show that (AC) and (BD) are parallel.

$$\frac{OA}{OB} = \frac{2}{2.5} = \frac{4}{5}$$

$$\frac{OC}{OD} = \frac{3}{3.75} = \frac{4}{5}$$

$$\frac{OA}{OB} = \frac{OC}{OD}$$
 so, according to the converse of Thales theorem,
(AC) and (BD) are parallel.

BSA BE SMART ACADEMY

Enlargement

How to enlarge (magnify) a figure.

Enlargement of center O and factor k Step 1: Draw [OA), [OB) and [OC).

Enlargement of center O and factor k > 1

Step 2: Place A' on [OA) such that:

$$OA' = kOA$$

Example: k = 2

Enlargement of center O and factor k > 1Step 3: repeat step 2 for B and C.

Enlargement of center O and factor k > 1 Step 4: Join A',B' and C'

BSA BE SMART ACADEMY

Reduction

To reduce a figure, same steps must be followed as enlargement.

PPLICTION #4

In the following figure, PARC is the enlargement with center O of MINE.

- What is the scale factor of this enlargement?
- b) Calculate the lengths AR, EN and PC.

a) PARC is an enlargement of MINE:

$$\frac{OP}{OM} = \frac{OA}{OI} = \frac{PA}{MI} = \frac{5}{3}$$

So the factor is $\frac{5}{2}$.

b)
$$AR = \frac{5}{3}$$
 $NI = \frac{5}{3} \times 3.6 = 6$

$$CR = \frac{5}{3}EN \text{ so } EN = \frac{3}{5}CR = \frac{3}{5} \times 2 = 1.2$$

 $PC = \frac{5}{3}ME = \frac{5}{3} \times 2.4 = 4$

$$PC = \frac{5}{3}ME = \frac{5}{3} \times 2.4 = 4$$

